Dirt Ratio

题目链接

题意

给$n$个数,计算$(l,r)$中不同数字数量/$(r-l+1)$.即 的最小值。

思路

二分答案,每次去看$Mid$值是否合法。我们将上面式子变形为

我们枚举$r$,在线段树上维护到当前$r$每一$l$的.动态更新会产生影响的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#ifndef ONLINE_JUDGE
#define dbg(x...) do{cout << "\033[33;1m" << #x << "->" ; err(x);} while (0)
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
#else
#define dbg(...)
#endif
#define inf 1ll << 50
#define lson rt << 1
#define rson rt << 1 | 1
#define Lson L, mid, lson
#define Rson mid + 1, R, rson
const int N = 6e4 + 5;
double lazy[N << 2];
double val[N << 2];
double Mid;
void push_up(int rt)
{
//sum[rt] = sum[lson] + sum[rson];
val[rt] = min(val[lson], val[rson]);
}

void build(int L, int R, int rt)
{
//sum[rt] = 0;
lazy[rt] = 0;
val[rt] = inf;
if (L == R)
{
val[rt] = L * Mid;
return;
}
int mid = (L + R) >> 1;
build(Lson);
build(Rson);
push_up(rt);
}

void push_down(int len, int rt)
{
if (lazy[rt])
{
// sum[lson] = sum[lson] + (len - (len >> 1)) * lazy[rt];
// sum[rson] = sum[rson] + (len >> 1) * lazy[rt];
val[lson] = val[lson] + lazy[rt];
val[rson] = val[rson] + lazy[rt];
lazy[lson] += lazy[rt];
lazy[rson] += lazy[rt];
lazy[rt] = 0;
}
}

void update(int l, int r, int v, int L, int R, int rt)
{

if (l <= L && r >= R)
{
int len = R - L + 1;
lazy[rt] += v;
// sum[rt] += v * len;
val[rt] += v;
return;
}
/*
if (L == R)
{
val[rt] += v;
return;
}
*/
int mid = (L + R) >> 1;
push_down(R - L + 1, rt);
if (l <= mid)
update(l, r, v, Lson);
if (r > mid)
update(l, r, v, Rson);
push_up(rt);
}

double query(int l, int r, int L, int R, int rt)
{
if (l <= L && r >= R)
return val[rt];
double ans = (1ll << 50) * 1.0;
push_down(R - L + 1, rt);
int mid = (L + R) >> 1;
if (l <= mid)
ans = min(ans, query(l, r, Lson));
if (r > mid)
ans = min(ans, query(l, r, Rson));
return ans;
}

int pre[N];
int pos[N];
int a[N], n;

bool check()
{
//dbg(Mid);
build(1, n, 1);
for (int i = 1; i <= n; i++)
{
// dbg(i);
update(pre[i] + 1, i, 1, 1, n, 1);
// dbg(query(1, i, 1, n, 1));
if (query(1, i, 1, n, 1) <= Mid * 1.0 * (i + 1))
return true;
}
return false;
}

int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
pos[i] = 0;
for (int i = 1; i <= n; i++)
{
pre[i] = pos[a[i]];
pos[a[i]] = i;
}
double l = 0, r = n + 1, eps = 1e-6;
while (r - l >= eps)
{
Mid = (r + l) / 2.0;
if (check())
r = Mid;
else
l = Mid;
}
printf("%.5f\n", l);
}
return 0;
}
0%