Rikka with Sequence

题目链接

题意

支持序列三种操作:
1.求(l,r)区间和。
2.执行代码”for (int i=l;i<=r;i++) A[i]=A[i-k];”
3.将区间(l,r),序列还原。

思路

可持久化treap,在无旋treap的基础上发展而来,这道题算是我的第一次可持久treap吧。
要注意的一个是操作二,有可能涉及到一个区间重复很多遍,我们可以用类似快速幂的操作将这个区间复制到一个目的长度。
还有要及时回收多余的结点,暴力重建整棵树。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#ifndef ONLINE_JUDGE
#define dbg(x...) do{cout << "\033[33;1m" << #x << "->" ; err(x);} while (0)
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
#else
#define dbg(...)
#endif
#define inf 1ll << 50

const int N = 2e5 + 10;
#define ls(x) treap[x].child[0]
#define rs(x) treap[x].child[1]
int rt, root, rtop, utop, sz, ver;
int a[N], res[N << 2], used[N << 2], pos[N << 2];

int n;

struct node
{
int child[2], val, size;
ll sum;
void init()
{
child[0] = child[1] = val = sum = 0;
size = 1;
}
}treap[N << 2];

int newnode(int val = 0)
{
int x;
if (rtop)
x = res[rtop--];
else
x = ++sz;
used[++utop] = x;
treap[x].init();
treap[x].val = val;
return x;
}

void push_up(int u)
{
treap[u].size = treap[ls(u)].size + treap[rs(u)].size + 1;
treap[u].sum = treap[ls(u)].sum + treap[rs(u)].sum + treap[u].val;
}

void dfs(int u)
{
if (!u)
return;
pos[u] = ver;
dfs(ls(u));
dfs(rs(u));
}

void rebuild()
{
ver++;
dfs(root);
dfs(rt);
int top = 0;
for (int i = 1; i <= utop; i++)
if (pos[used[i]] == ver)
used[++top] = used[i];
else
res[++rtop] = used[i];
utop = top;
}

int build(int l, int r)
{
if (l > r)
return 0;
int mid = (l + r) >> 1;
int u = newnode(a[mid]);
ls(u) = build(l, mid - 1);
rs(u) = build(mid + 1, r);
push_up(u);
return u;
}

ll seed = 17121197;

ll Rand()
{
return seed = seed * 48271 % 2147483647;
}

int merge(int x, int y)
{
if (!x && !y)
return 0;
int u = newnode();
if (!x || !y)
{
treap[u] = treap[x + y];
return u;
}
if (Rand() & 1)
{
treap[u] = treap[x];
rs(u) = merge(rs(x), y);
}
else
{
treap[u] = treap[y];
ls(u) = merge(x, ls(y));
}
push_up(u);
return u;
}

int Pow(int a, int b)
{
int ret = 0;
while (b)
{
if (b & 1)
ret = merge(ret, a);
a = merge(a, a);
b >>= 1;
}
return ret;
}

int split(int x, int l, int r)
{
if (l > r)
return 0;
if (l == 1 && r == treap[x].size)
{
int u = newnode();
treap[u] = treap[x];
return u;
}
if (r <= treap[ls(x)].size)
return split(ls(x), l, r);
if (l > treap[ls(x)].size + 1)
return split(rs(x), l - treap[ls(x)].size - 1, r - treap[ls(x)].size - 1);
int u = newnode(treap[x].val);
ls(u) = split(ls(x), l, treap[ls(x)].size);
rs(u) = split(rs(x), 1, r - treap[ls(x)].size - 1);
push_up(u);
return u;
}

void update(int l, int r, int k)
{
int x = split(rt, 1, l - k - 1), y = split(rt, l - k, l - 1);
int z = Pow(y, (r - l + 1) / k);
int a = split(rt, l - k, l - k + 1 + (r - l + 1) % k);
int b = split(rt, r + 1, n);
rt = merge(x, y);
rt = merge(rt, z);
rt = merge(rt, a);
rt = merge(rt, b);
}

void back(int l, int r)
{
int x = split(rt, 1, l - 1), y = split(root, l, r), z = split(rt, r + 1, n);
rt = merge(x, y);
rt = merge(rt, z);
}

int main()
{
int q;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
int limit = 450;
ls(0) = rs(0) = treap[0].sum = 0;
treap[0].size = 0;
rt = root = build(1, n);
while (q--)
{
int type;
scanf("%d", &type);
int l, r;
scanf("%d%d", &l, &r);
if (q % limit == 0)
rebuild();
if (type == 1)
printf("%lld\n", treap[split(rt, l, r)].sum);
else if (type == 2)
{
int k;
scanf("%d", &k);
update(l, r, k);
}
else
back(l, r);
}
return 0;
}
0%