题目链接
题意
一棵树每个点有点权,m次询问,每次询问一条路径上点权在一个区间内的点有多少。
思路
树链剖分+可持久化线段树
在树上建可持久化线段树,维护树链剖分的id序列的权值数量。
每次查询时候在树链上查主席树的结果。
很不幸这种做法T掉了1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
using namespace std;
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
const int N = 1e5 + 5;
ll seg[N << 5];
int lson[N << 5], rson[N << 5];
int root[N], val[N];
int size[N], son[N], dep[N], id[N], top[N], fa[N];
int cur;
struct node
{
int v, nxt;
}edge[2 * N];
int head[N], tot, t;
vector<int> des;
void dfs1(int u, int f, int d)
{
size[u] = 1;
dep[u] = d;
son[u] = -1;
fa[u] = f;
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f)
continue;
dfs1(v, u, d + 1);
size[u] += size[v];
if (son[u] == -1 || size[v] > size[son[u]])
son[u] = v;
}
}
/*
void dfs2(int u, int f, int t)
{
top[u] = t;
id[u] = ++cur;
if (son[u] != -1)
dfs2(son[u], u, t);
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f || v == son[u])
continue;
dfs2(v, u, v);
}
}
*/
void push_up(int rt)
{
seg[rt] = seg[lson[rt]] + seg[rson[rt]];
}
void update(int p, int old, int L, int R, int &rt)
{
rt = ++t;
seg[rt] = seg[old];
lson[rt] = lson[old];
rson[rt] = rson[old];
if (L == R)
{
seg[rt] += des[p - 1];
// dbg(p, seg[rt]);
return;
}
int mid = (L + R) >> 1;
if (p <= mid)
update(p, lson[old], L, mid, lson[rt]);
else
update(p, rson[old], mid + 1, R, rson[rt]);
push_up(rt);
}
int query(int l, int r, int L, int R, int rt)
{
// dbg(l, r, L, R, rt);
if (rt == 0)
return 0;
if (l <= L && r >= R)
return seg[rt];
int mid = (L + R) >> 1;
int ans = 0;
if (l <= mid)
ans += query(l, r, L, mid, lson[rt]);
if (r > mid)
ans += query(l, r, mid + 1, R, rson[rt]);
// dbg(ans);
return ans;
}
void dfs2(int u, int f, int t)
{
top[u] = t;
id[u] = ++cur;
int p = lower_bound(des.begin(), des.end(), val[u]) - des.begin() + 1;
update(p, root[cur - 1], 1, des.size(), root[cur]);
// dbg(p, cur);
if (son[u] != -1)
dfs2(son[u], u, t);
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f || v == son[u])
continue;
dfs2(v, u, v);
}
}
template<class T>
void read(T& ret)
{
ret = 0;
char c;
while ((c = getchar()) > '9' || c < '0');
while (c >= '0' && c <= '9')
{
ret = ret * 10 + c - '0';
c = getchar();
}
}
void init(int n)
{
for (int i = 1; i <= n; i++)
{
son[i] = -1;
head[i] = -1;
root[i] = 0;
}
t = 0;
tot = 0;
lson[0] = rson[0] = 0;
seg[0] = 0;
root[0] = 0;
cur = 0;
des.clear();
}
void add_edge(int u, int v)
{
edge[++tot].v = v;
edge[tot].nxt = head[u];
head[u] = tot;
}
int get_ans(int u, int v, int a, int b)
{
// dbg(u, v, a, b);
int ans = 0;
a = lower_bound(des.begin(), des.end(), a) - des.begin() + 1;
b = upper_bound(des.begin(), des.end(), b) - des.begin();
while (top[u] != top[v])
{
if (dep[top[u]] < dep[top[v]])
swap(u, v);
ans += query(a, b, 1, des.size(), root[id[u]]) - query(a, b, 1, des.size(), root[id[top[u]] - 1]);
// dbg(u, v, top[u], top[v], ans);
u = fa[top[u]];
}
if (dep[u] > dep[v])
swap(u, v);
// dbg(u, v, a, b, id[u], id[v]);
ans += query(a, b, 1, des.size(), root[id[v]]) - query(a, b, 1, des.size(), root[id[u] - 1]);
return ans;
}
int main()
{
int n, m;
while (scanf("%d%d", &n, &m) != EOF)
{
init(n);
for (int i = 1; i <= n; i++)
{
read(val[i]);
des.push_back(val[i]);
}
des.push_back(0);
des.push_back(0x3f3f3f3f);
for (int i = 1; i < n; i++)
{
int u, v;
read(u);
read(v);
add_edge(u, v);
add_edge(v, u);
}
sort(des.begin(), des.end());
des.erase(unique(des.begin(), des.end()), des.end());
dfs1(1, 0, 1);
dfs2(1, 0, 1);
while (m--)
{
int u, v, a, b;
read(u);
read(v);
read(a);
read(b);
printf("%d ", get_ans(u, v, a, b));
}
putchar('\n');
}
return 0;
}
赛后我自己去测试,这种做法跑最大的数据比正解慢很多。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
203.86user 0.04system 0:03.91elapsed 99%CPU (0avgtext+0avgdata 21884maxresident)k
0inputs+9824outputs (0major+4724minor)pagefaults 0swaps
13.40user 0.10system 0:13.52elapsed 99%CPU (0avgtext+0avgdata 36392maxresident)k
0inputs+9824outputs (0major+8545minor)pagefaults 0swaps
AC
3.86user 0.03system 0:03.90elapsed 99%CPU (0avgtext+0avgdata 21784maxresident)k
0inputs+9824outputs (0major+4725minor)pagefaults 0swaps
13.45user 0.09system 0:13.55elapsed 99%CPU (0avgtext+0avgdata 36288maxresident)k
0inputs+9824outputs (0major+8546minor)pagefaults 0swaps
AC
3.86user 0.04system 0:03.91elapsed 99%CPU (0avgtext+0avgdata 21884maxresident)k
0inputs+9808outputs (0major+4724minor)pagefaults 0swaps
13.65user 0.09system 0:13.77elapsed 99%CPU (0avgtext+0avgdata 36292maxresident)k
0inputs+9808outputs (0major+8546minor)pagefaults 0swaps
AC
3.95user 0.03system 0:03.98elapsed 99%CPU (0avgtext+0avgdata 21784maxresident)k
0inputs+9816outputs (0major+4726minor)pagefaults 0swaps
13.90user 0.07system 0:13.99elapsed 99%CPU (0avgtext+0avgdata 36288maxresident)k
0inputs+9816outputs (0major+8545minor)pagefaults 0swaps
AC
离线树状数组(或线段树)+树链剖分
这个做法也很好理解,但是开始的时候深陷主席树的泥潭不能自拔。
离线求出小于等于某个数字的点有多少,查询结果的时候用之前离线处理的点相减就行了。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
using namespace std;
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
const int N = 1e5 + 5;
ll val[N];
int size[N], son[N], dep[N], id[N], top[N], fa[N];
int cur;
struct node
{
int v, nxt;
}edge[2 * N];
int head[N], tot, t;
// vector<int> des;
ll sum[N];
int lowbit(int x)
{
return x & (-x);
}
void add(int x, ll v)
{
while (x <= cur)
{
// dbg(x);
sum[x] += v;
x += lowbit(x);
}
}
ll query(int x)
{
ll ans = 0;
while (x)
{
ans += sum[x];
x -= lowbit(x);
}
return ans;
}
void dfs1(int u, int f, int d)
{
size[u] = 1;
dep[u] = d;
son[u] = -1;
fa[u] = f;
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f)
continue;
dfs1(v, u, d + 1);
size[u] += size[v];
if (son[u] == -1 || size[v] > size[son[u]])
son[u] = v;
}
}
/*
void dfs2(int u, int f, int t)
{
top[u] = t;
id[u] = ++cur;
if (son[u] != -1)
dfs2(son[u], u, t);
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f || v == son[u])
continue;
dfs2(v, u, v);
}
}
void push_up(int rt)
{
seg[rt] = seg[lson[rt]] + seg[rson[rt]];
}
void update(int p, int old, int L, int R, int &rt)
{
rt = ++t;
seg[rt] = seg[old];
lson[rt] = lson[old];
rson[rt] = rson[old];
if (L == R)
{
seg[rt] += des[p - 1];
// dbg(p, seg[rt]);
return;
}
int mid = (L + R) >> 1;
if (p <= mid)
update(p, lson[old], L, mid, lson[rt]);
else
update(p, rson[old], mid + 1, R, rson[rt]);
push_up(rt);
}
int query(int l, int r, int L, int R, int rt)
{
// dbg(l, r, L, R, rt);
if (rt == 0)
return 0;
if (l <= L && r >= R)
return seg[rt];
int mid = (L + R) >> 1;
int ans = 0;
if (l <= mid)
ans += query(l, r, L, mid, lson[rt]);
if (r > mid)
ans += query(l, r, mid + 1, R, rson[rt]);
// dbg(ans);
return ans;
}
*/
void dfs2(int u, int f, int t)
{
top[u] = t;
id[u] = ++cur;
// update(p, root[cur - 1], 1, des.size(), root[cur]);
// dbg(p, cur);
if (son[u] != -1)
dfs2(son[u], u, t);
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f || v == son[u])
continue;
dfs2(v, u, v);
}
}
template<class T>
void read(T& ret)
{
ret = 0;
char c;
while ((c = getchar()) > '9' || c < '0');
while (c >= '0' && c <= '9')
{
ret = ret * 10 + c - '0';
c = getchar();
}
}
void init(int n)
{
for (int i = 1; i <= n; i++)
{
son[i] = -1;
head[i] = -1;
}
tot = 0;
cur = 0;
// des.clear();
memset(sum, 0, sizeof(sum));
}
void add_edge(int u, int v)
{
edge[++tot].v = v;
edge[tot].nxt = head[u];
head[u] = tot;
}
ll get_ans(int u, int v)
{
// dbg(u, v, a, b);
ll ans = 0;
while (top[u] != top[v])
{
if (dep[top[u]] < dep[top[v]])
swap(u, v);
//ans += query(a, b, 1, des.size(), root[id[u]]) - query(a, b, 1, des.size(), root[id[top[u]] - 1]);
ans += query(id[u]) - query(id[top[u]] - 1);
// dbg(u, v, top[u], top[v], ans);
u = fa[top[u]];
}
if (dep[u] > dep[v])
swap(u, v);
// dbg(u, v, a, b, id[u], id[v]);
// ans += query(a, b, 1, des.size(), root[id[v]]) - query(a, b, 1, des.size(), root[id[u] - 1]);
ans += query(id[v]) - query(id[u] - 1);
return ans;
}
struct nn
{
int a, b, u, v, id;
/*
int to1, to2;
bool operator < (const nn& w) const
{
return id < w.id;
}
*/
}que[N];
struct wa
{
int a, u, v;
ll ans;
int type;
wa (int u = 0, int v = 0, int a = 0, int type = 0): u(u), v(v), a(a), type(type) {}
}wai[N * 3];
int num[3 * N];
bool cmp(int a, int b)
{
if (wai[a].a == wai[b].a)
return wai[a].type < wai[b].type;
return wai[a].a < wai[b].a;
}
int main()
{
int n, m;
while (scanf("%d%d", &n, &m) != EOF)
{
init(n);
for (int i = 1; i <= n; i++)
{
read(val[i]);
}
for (int i = 1; i < n; i++)
{
int u, v;
read(u);
read(v);
add_edge(u, v);
add_edge(v, u);
}
dfs1(1, 0, 1);
dfs2(1, 0, 1);
int now = 0;
for (int i = 1; i <= m; i++)
{
int u, v, a, b;
read(que[i].u);
read(que[i].v);
read(que[i].a);
read(que[i].b);
wai[++now] = wa(que[i].u, que[i].v, que[i].a - 1, 2);
num[now] = now;
wai[++now] = wa(que[i].u, que[i].v, que[i].b, 2);
num[now] = now;
}
for (int i = 1; i <= n; i++)
wai[++now] = wa(i, 0, val[i], 1), num[now] = now;
sort(num + 1, num + now + 1, cmp);
for (int i = 1; i <= now; i++)
{
// dbg(i, wai[num[i]].u, wai[num[i]].type, num[i]);
if (wai[num[i]].type == 2)
wai[num[i]].ans = get_ans(wai[num[i]].u, wai[num[i]].v);
else
add(id[wai[num[i]].u], wai[num[i]].a);
}
for (int i = 1; i <= m; i++)
printf("%lld%c", wai[2 * i].ans - wai[2 * i - 1].ans, i == m? '\n': ' ');
}
return 0;
}