meeting

题目链接

题意

有一颗$n$个点的树,其中有$k$个点有人居住,树上每条边花费都是1,现要找到一个点,使得所有人到这个点的花费的最大值最小。

思路

树形dp

每个点作为答案的话,我们可以先$dfs$一遍算出,所有点的子树中到有人的点到它的最远距离。
接下来考虑,第二遍$dfs$,我们要计算,来自他的父亲的有人的点到他的最远距离。
第二遍dp比较复杂,需要考虑较多东西,要仔细一点。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#ifndef ONLINE_JUDGE
#define dbg(x...) do{cout << "\033[33;1m" << #x << "->" ; err(x);} while (0)
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
#else
#define dbg(...)
#endif
#define inf 1ll << 50

const int N = 1e5 + 5;
int tot;
int head[N];
struct E
{
int v, nxt, mx;
}edge[2 * N];
int son[N];
bool is[N];
int mx[N];

void add_edge(int u, int v)
{
edge[++tot].v = v;
edge[tot].nxt = head[u];
head[u] = tot;
}

void dfs(int u, int f)
{
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f)
continue;
dfs(v, u);
if (mx[v] != -1 && (son[u] == -1 || mx[u] < mx[v] + 1))
{
son[u] = v;
mx[u] = mx[v] + 1;
}
if (is[v] && (son[u] == -1 || mx[u] < 1))
{
son[u] = v;
mx[u] = 1;
}
}
//dbg(u, mx[u]);
}
int ans;

void dfs2(int u, int f, int t)
{
int pmx = -1, qmax = max(mx[u], t);
if (qmax == -1)
qmax = -1;
else
qmax += 1;
if (is[u])
pmx = max(pmx, 0), qmax = max(qmax, 1);
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f)
continue;
if (v != son[u])
{
if (mx[v] != -1)
pmx = max(pmx, mx[v] + 1);
if (is[v])
pmx = max(pmx, 1);
dfs2(v, u, qmax);
}
}
//dbg(u, pmx, qmax, t, max(t, pmx));
if (son[u] != -1)
dfs2(son[u], u, max(t, pmx) == -1? -1 : max(t, pmx) + 1);
mx[u] = max(mx[u], t);
if (mx[u] < mx[ans])
ans = u;
//dbg(u, mx[u], ans);
}
int main()
{
int n, k;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++)
head[i] = -1, son[i] = -1, mx[i] = -1;
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
for (int i = 1; i <= k; i++)
{
int x;
scanf("%d", &x);
is[x] = 1;
}
if (k == 0)
{
puts("0");
return 0;
}
dfs(1, 0);
ans = 1;
dfs2(1, 0, -1);
printf("%d\n", mx[ans]);
return 0;
}

直径

也可以在这些点中找直径,若直径是$d$,那么这些点都可以在内到达这点。
这种方法比较好写。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int mx[N];
int is[N];
struct E
{
int v, nxt;
}edge[2 * N];
int tot;
int head[N];
void add_edge(int u, int v)
{
edge[++tot].v = v;
edge[tot].nxt = head[u];
head[u] = tot;
}
int dep[N];
void dfs(int u, int f)
{
mx[u] = 0;
dep[u] = dep[f] + 1;
for (int it = head[u]; it != -1; it = edge[it].nxt)
{
int v = edge[it].v;
if (v == f)
continue;
dfs(v, u);
if (is[v])
if (mx[u] == 0)
mx[u] = v;
if (mx[v])
mx[u] = dep[mx[u]] - dep[u] >= dep[mx[v]] - dep[u] + 1? mx[u] : mx[v];
}
}

int main()
{
int n, k;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++)
{
head[i] = -1;
}
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
for (int i = 1; i <= k; i++)
{
int x;
scanf("%d", &x);
is[x] = 1;
}
dep[0] = 0;
dfs(1, 0);
int rt = mx[1];
dfs(rt, 0);
printf("%d\n", (dep[mx[rt]] - dep[rt] + 1) / 2);
return 0;
}

0%