Eddy Walker 2

题目链接

题意

一个喝醉的人每次步数是$1~k$中的等概率某一个数字,问他走到$n$的概率是多少。

思路

很容易想到dp,$dp[i]$表示走到$i$的概率。

这个线性递推显然不能用矩阵快速幂。
于是我学会了一个奇技淫巧,快速处理线性递推。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#ifndef ONLINE_JUDGE
#define dbg(x...) do{cout << "\033[33;1m" << #x << "->" ; err(x);} while (0)
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
#else
#define dbg(...)
#endif
#define inf 1ll << 50
const int N = 1e5+ 5;
//#define rep(i,a,n) for (int i=a;i<n;i++)
//#define per(i,a,n) for (int i=n-1;i>=a;i--)
//#define pb push_back
//#define mp make_pair
//#define all(x) (x).begin(),(x).end()
//#define fi first
//#define se second
//#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1e9 + 7; //修改成题目要求的模数
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll Pow(ll a, ll b)
{
ll ans = 1;
a %= mod;
assert(b >= 0);
while (b)
{
if (b & 1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
// head
namespace linear_seq
{
const int N = 10010;
ll res[N], base[N], _c[N], _md[N];
vector<ll> Md;
inline int SZ(vector<ll>& x)
{
return (int)x.size();
}
void mul(ll *a, ll *b, int k)
{
for (int i = 0; i < k + k; i++)
_c[i] = 0;
//rep(i,0,k+k) _c[i]=0;
//rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i = 0; i < k; i++)
if (a[i])
for (int j = 0; j < k; j++)
_c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - 1; i >= k; i--)
if (_c[i])
for (int j = 0; j < SZ(Md); j++)
_c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
for (int i = 0; i < k; i++)
a[i] = _c[i];
}
int solve(ll n, vector<ll> a, vector<ll> b)
{ // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans = 0, pnt = 0;
int k = SZ(a);
assert(SZ(a) == SZ(b));
//rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
for (int i = 0; i < k; i++)
_md[k - 1 - i] = -a[i];
_md[k] = 1;
Md.clear();
//rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
for (int i = 0; i < k; i++)
if (_md[i] != 0)
Md.push_back(i);
//rep(i,0,k) res[i]=base[i]=0;
for (int i = 0; i < k; i++)
res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n)
pnt++;
for (int p = pnt; p >= 0; p--)
{
mul(res, res, k);
if ((n >> p) & 1)
{
for (int i = k - 1; i >= 0; i--)
res[i + 1] = res[i];
res[0] = 0;
//rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
for (int j = 0; j < SZ(Md); j++)
res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
//rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
for (int i = 0; i < k; i++)
ans = (ans + res[i] * b[i]) % mod;
if (ans < 0)
ans+=mod;
return ans;
}
vector<ll> BM(vector<ll> s)
{
vector<ll> C(1,1),B(1,1);
int L = 0, m = 1, b = 1;
for (int n = 0; n < SZ(s); n++)
{
ll d = 0;
for (int i = 0; i < L + 1; i++)
d = (d + (ll)C[i] * s[n-i]) % mod;
if (d==0)
++m;
else if (2 * L <= n)
{
vector<ll> T = C;
ll c = mod - d * Pow(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m)
C.push_back(0);
for (int i = 0; i < SZ(B); i++)
C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L;
B = T;
b = d;
m=1;
}
else
{
ll c = mod - d * Pow(b, mod - 2) % mod;
while (SZ(C) < SZ(B) + m)
C.push_back(0);
for (int i = 0; i < SZ(B); i++)
C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
ll gao(vector<ll> a,ll n)
{
vector<ll> c = BM(a);
c.erase(c.begin());
for (int i = 0; i < SZ(c); i++)
c[i] = (mod - c[i]) % mod;
dbg(SZ(c));
return solve(n, c, vector<ll> (a.begin(), a.begin() + SZ(c)));
}
};
vector<ll> v;
int main()
{
/*
int n;
while (~scanf("%d",&n))
{
vector<int>v; //输入前几项(一般2k项足够)
v.push_back(1);
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(5);
v.push_back(8);
//VI{1,1,2,3,5,8} 解出斐波那契数列
printf("i:%d arr:%d\n",n,linear_seq::gao(v,n-1));
}
*/
int T;
scanf("%d", &T);
while (T--)
{
v.clear();
ll n;
int k;
scanf("%d%lld", &k, &n);
ll invk = Pow(k, mod - 2);
dbg(invk);
if (n < 0)
{
printf("%lld\n", 2 * Pow(k + 1, mod - 2) % mod);
continue;
}
v.push_back(1);
for (int i = 1; i < k; i++)
{
ll x = 0;
for (int j = 0; j < i; j++)
x = (x + v[j]) % mod;
x = x * invk % mod;
v.push_back(x);
}
for (int i = k; i <= 2 * k + 5; i++)
{
ll x = 0;
for (int j = 1; j <= k; j++)
x = (x + v[i - j]) % mod;
x = x * invk % mod;
v.push_back(x);
}
printf("%lld\n", linear_seq::gao(v, n));
}
return 0;
}

0%