Inner World

题目链接

题意

有$n$棵树,每棵树开始只有根节点,现有$q$次操作,每次在树上的间连一条边,或者询问间所有树上节点的子树大小之和是多少。

思路

每次加边都不同,可以把这些树都并到一棵树上去,因为实质上他们可以长得都一样,只不过我给每个树上节点标记一个作用范围。
关于子树大小问题,我们很容易想到借助$dfs$序转到序列上去做。相当于,我每次给一个位置的区间加一,或者询问任意两个位置区间差。
主席树裸题。于是传说中的$dfs$序建可持久化线段树就出现了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <bits/stdc++.h>
using namespace std;
const int maxn=312345;
struct node {
int l,r;
long long sum,add;
} seg[maxn*62];
vector<int> G[maxn];
int n,m,q,L[maxn],R[maxn],st[maxn],ed[maxn],rid[maxn],tot,root[maxn],cnt;
void update(int &x,int y,int L,int R,int l,int r) {
x=++cnt;
seg[x]=seg[y];
seg[x].sum+=r-l+1;
if (l==L&&r==R) {
++seg[x].add;
return;
}
int m=(L+R)>>1;
if (m>=l) update(seg[x].l,seg[y].l,L,m,l,min(m,r));
if (m<r) update(seg[x].r,seg[y].r,m+1,R,max(m+1,l),r);
}
long long query(int x,int y,int L,int R,int l,int r,long long add) {
if (l<=L&&r>=R) return add*(R-L+1)+seg[x].sum-seg[y].sum;
int m=(L+R)>>1;
long long ret=0;
if (m>=l) ret+=query(seg[x].l,seg[y].l,L,m,l,r,add+seg[x].add-seg[y].add);
if (m<r) ret+=query(seg[x].r,seg[y].r,m+1,R,l,r,add+seg[x].add-seg[y].add);
return ret;
}
void dfs(int u) {
st[u]=++tot;
rid[tot]=u;
for (int i=0;i<(int)G[u].size();++i) {
int v=G[u][i];
dfs(v);
}
ed[u]=tot;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;++i) {
int u,v,l,r;scanf("%d%d%d%d",&u,&v,&l,&r);
G[u].push_back(v);
L[v]=l;
R[v]=r;
}
dfs(1);
L[1]=1;
R[1]=n;
for (int i=1;i<=tot;++i) update(root[i],root[i-1],1,n,L[rid[i]],R[rid[i]]);
scanf("%d",&q);
while (q--) {
int x,l,r;scanf("%d%d%d",&x,&l,&r);
printf("%lld\n",query(root[ed[x]],root[st[x]-1],1,n,l,r,0));
}
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#ifndef ONLINE_JUDGE
#define dbg(x...) do{cout << "\033[33;1m" << #x << "->" ; err(x);} while (0)
void err(){cout << "\033[39;0m" << endl;}
template<template<typename...> class T, typename t, typename... A>
void err(T<t> a, A... x){for (auto v: a) cout << v << ' '; err(x...);}
template<typename T, typename... A>
void err(T a, A... x){cout << a << ' '; err(x...);}
#else
#define dbg(...)
#endif
#define inf 1ll << 50

const int N = 3e5 + 5;
vector<int> G[N];

struct oper
{
int type, l, r, u, v;
int id;
bool operator < (const oper& oth) const
{
return id < oth.id;
}
}op[N];
int st[N], ed[N];
int dfn;
int fa[N];
void dfs(int u, int f)
{
st[u] = ++dfn;
dbg(u, st[u]);
fa[u] = f;
for (auto &v : G[u])
{
if (v == f)
continue;
dfs(v, u);
}
ed[u] = dfn;
}

struct que
{
int type, l, r, pos;
int bel, sign;
bool operator < (const que& u) const
{
if (pos == u.pos)
return type < u.type;
return pos < u.pos;
}
}arr[N * 3];
ll ans[N];

#define lson rt << 1
#define rson rt << 1 | 1
#define Lson L, mid, lson
#define Rson mid + 1, R, rson

ll sum[N << 2], lazy[N << 2];
void push_up(int rt)
{
sum[rt] = sum[lson] + sum[rson];
}

void build(int L, int R, int rt)
{
lazy[rt] = 0;
if (L == R)
{
sum[rt] = 0;
return;
}
int mid = (L + R) >> 1;
build(Lson);
build(Rson);
push_up(rt);
}

void push_down(int rt, int len)
{
if (lazy[rt])
{
lazy[lson] += lazy[rt];
lazy[rson] += lazy[rt];
sum[lson] += (len - (len >> 1)) * lazy[lson];
sum[rson] += (len >> 1) * lazy[rt];
lazy[rt] = 0;
}
}

void update(int l, int r, int v, int L, int R, int rt)
{
if (l <= L && r >= R)
{
lazy[rt] += v;
sum[rt] += (R - L + 1) * v;
return;
}
push_down(rt, R - L + 1);
int mid = (L + R) >> 1;
if (l <= mid)
update(l, r, v, Lson);
if (r > mid)
update(l, r, v, Rson);
push_up(rt);
}

ll query(int l, int r, int L, int R, int rt)
{
if (l <= L && r >= R)
return sum[rt];
push_down(rt, R - L + 1);
int mid = (L + R) >> 1;
ll ans = 0;
if (l <= mid)
ans += query(l, r, Lson);
if (r > mid)
ans += query(l, r, Rson);
return ans;
}

int main()
{
int n, m;
scanf("%d%d", &n, &m);
int tot = 0;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d%d", &op[i].u, &op[i].v, &op[i].l, &op[i].r);
op[i].type = 1;
op[i].id = i;
G[op[i].u].push_back(op[i].v);
}
dfn = 0;
dbg("dfs begin");
dfs(1, 0);
dbg("dfs end");
for (int i = 1; i <= m; i++)
{
tot++;
arr[tot].type = 1;
arr[tot].pos = st[op[i].v];
arr[tot].l = op[i].l;
arr[tot].r = op[i].r;
}
int q;
scanf("%d", &q);
for (int i = 1; i <= q; i++)
{
int u, l, r;
scanf("%d%d%d", &u, &l, &r);
tot++;
arr[tot].type = 2;
arr[tot].l = l;
arr[tot].r = r;
arr[tot].pos = st[u] - 1;
arr[tot].bel = i;
arr[tot].sign = -1;

tot++;
arr[tot].type = 2;
arr[tot].l = l;
arr[tot].r = r;
arr[tot].pos = ed[u];
arr[tot].bel = i;
arr[tot].sign = 1;
}
tot++;
arr[tot].type = 1;
arr[tot].l = 1;
arr[tot].r = n;
arr[tot].pos = 1;
sort(arr + 1, arr + tot + 1);
build(1, n, 1);
for (int i = 1; i <= tot; i++)
{
dbg(arr[i].type, arr[i].l, arr[i].r, arr[i].pos, arr[i].bel, arr[i].sign);
if (arr[i].type == 1)
{
update(arr[i].l, arr[i].r, 1, 1, n, 1);
}
else
{
ll ret = arr[i].sign * query(arr[i].l, arr[i].r, 1, n, 1);
dbg(ret);
ans[arr[i].bel] += ret;
}
}
for (int i = 1; i <= q; i++)
printf("%lld\n", ans[i]);
return 0;

}
0%